
in

Ben Hutchings

in ii

COLLABORATORS

TITLE :

in

ACTION NAME DATE SIGNATURE

WRITTEN BY Ben Hutchings January 31, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

in iii

Contents

1 in 1

1.1 Contents . 1

1.2 Legal Information . 1

1.3 Introduction . 2

1.4 Installation . 3

1.5 How to use AlertPatch . 3

1.6 The History of AlertPatch . 3

1.7 Explanation of Some Common Alerts . 4

1.8 Acknowledgements . 7

1.9 How and Why to Contact Me . 7

in 1 / 8

Chapter 1

in

1.1 Contents

/\ ___ __ ___ | \ ___ __
/ \ | | |) | |___/ /\ | / \ | |

/----\ | |-- |-- | | / \ | (|--|
/ \ |__ |___ | \ | | /¯¯¯¯\ | __/ | |

by Ben Hutchings version 1.1 26 November 1995

Legal

Introduction

Installation

Usage

History

Common Alerts

Acknowledgements

Contact Me

1.2 Legal Information

The contents of the ‘AlertPatch’ package are the files:

AlertPatch AlertPatch.info
AlertPatch.guide AlertPatch.guide.info

These files are all copyright © Ben Hutchings 1995. They may freely be
distributed provided

in 2 / 8

(i)~~~no charge is made for this above the costs of duplication,
distribution and the media used,
(ii)~~all the aforementioned files are distributed together, and
(iii)~none of the aforementioned files are altered, except, if the
distributor so wishes, by converting them into a compressed form
from which they can be retrieved unaltered.

Software released under these conditions is often known as Freeware.

This software and documentation is provided ’as-is’ without representation
or warranty of any kind, either express or implied, including without
limitation, any representations or endorsements regarding the use of, the
results of, or the performance of the information, its appropriateness,
accuracy, reliability, or currentness; the entire risk as to the use of
this information is assumed by the user.

In no event shall I be liable for any damages, direct, indirect,
incidental or consequential, resulting from any defect in the information,
even if I have been advised of the possibility of such damages.

1.3 Introduction

‘Guru’ alerts are a occupational hazard for every programmer ←↩
and many

other Amiga users besides. Not only is it very frustrating to see possibly
hours of work fall into the bit bucket, but even more infuriatingly, the
only explanation is some impenetrable hex code which only those with a
serial debugger can fully interpret.

Until now! Admittedly, there are many programs around which can explain
the last alert number, but hardly any which will reliably tell you which
program was running at the moment the crash occurred. This is because the
task information is usually corrupted by the time the computer has
rebooted. AlertPatch is different. AlertPatch, as its name would suggest,
actually replaces the system alerts with more informative reports,
including a register dump for real Gurus.

Instead of

| |
| Software Failure. Press left mouse button to continue. |
| |
| Error: 8000 0003 Task: 002A4568 |
| |
¯¯¯
you get something like

| |
| Software Failure. Press left mouse button to continue. |
| |
| Error: 8000 0003 |
| CPU (68000) reported word access at odd address |
| |
| Task: 002A4568 |

in 3 / 8

| Background CLI |
| |
| Command: a_dodgy_program |
| |
| Registers: |
| PC = ???????? SR = ???? |
| D0 = 00003287 D1 = 43098764 D2 = 98327642 D3 = 00212F78 |
| D4 = 00000000 D5 = 0000036A D6 = 34089743 D7 = 0000000A |
| A0 = 00943643 A1 = 74364383 A2 = 00000000 A3 = 00032973 |
| A4 = 43874343 A5 = 0028AB44 A6 = 000987BE A7 = 002B9842 |
| |
¯¯¯
(Unfortunately it is only possible to find the PC and SR registers for
Recoverable Alerts. Also, there is currently no support for additional
registers in the 68010+.)

Interested? Well go ahead and
install
it!

1.4 Installation

To install AlertPatch on your hard disk, simply drag the icon across to
the appropriate place. You may, for instance, want to put it in your
WBStartup drawer.

To install this guide file, simply drag its icon across to the appropriate
place on your hard disk.

If you prefer to use the CLI, then you already know how to install it! You
may want to consider adding AlertPatch to your s:user-startup file.

1.5 How to use AlertPatch

Normally you would have AlertPatch in your WBStartup drawer or as a
command in your s:user-startup script. It is not currently possible to
remove AlertPatch, although you can remove all reset handlers (including
AlertPatch) using an anti-virus program such as BootX or a system control
program such as Xoper. However, AlertPatch will never install more than
one copy of itself.

If you do not include AlertPatch in your startup procedure, you can start
it at any time by opening on its icon or running it from the CLI. It will
automatically detach from the CLI so you do not need to use the Run
command with it. AlertPatch will remain in memory until you remove all
reset handlers or turn off the computer.

1.6 The History of AlertPatch

in 4 / 8

version 1.1, 26 November 1995

·~Now works when run from the Workbench. It was crashing before. Very
sorry about this.

version 1.0, 12 November 1995

First public release.

1.7 Explanation of Some Common Alerts

Note to programmers: Where I have used the term ’object’ it is not meant
in the precise sense associated with object-oriented programming!

In my experience, the ten most common alerts are these:

Error code Subsystem Reason Section

0100 0009 Exec memory already free at FreeMem 3
0100 000C Exec MemList failed sanity check 3
8000 0003 CPU word access at odd address 1
8000 0004 CPU illegal instruction 2
8000 0005 CPU division by zero 4
8000 0009 CPU illegal $A instruction 2
8000 000A CPU illegal $F instruction 2
8100 0005 Exec corrupt MemList 3
8100 0009 Exec memory already free at FreeMem 3
8700 0004 AmigaDOS reception of unexpected packet 5

And here are some in-depth explanations which will hopefully go some way
to alleviating your frustration... Some notes apply only if the program at
fault is your own.

1. Address error - 8000 0003

The message for this is ’word access at odd address’. What it means
(technically) is that the processor has generated a memory address which
it needs to fetch a word or long word from, and this turns out to be an
odd number. The 68000 processor is unable to fetch any word or longword
data from an odd address, and none of the 680x0 processors are able to
read program code from an odd address.

There are three likely possible causes:

(a)~The program is intended for use only on 68020 or better CPUs (usually
this would be stated in its documentation). PROGRAMMERS: Make sure
your compiler isn’t optimising for a processor you don’t have!

(b)~Some of the program’s data or structures are not properly aligned.
PROGRAMMERS: Check the following three possibilities.
(i)~~~If it is an assembler program, then you have probably used a
DC.B/DS.B directive which declares an odd number of bytes, then
gone on to assemble word data or code. To fix this, insert the
directive ’EVEN’ after the problematic directive. Alternatively,

in 5 / 8

you may be using an odd-numbered displacement. If you have used
Commodore’s structure-defining macros, don’t forget that you may
need to include padding bytes in your structure definition.
(ii)~~If you are using NorthC, then you have run into a nasty bug in
the compiler. This usually happens if you define and initialise
a string array followed by another definition. My solution is to
add the text ’\0’ at the end of the string. This simply pads the
text to an even address without actually affecting the string’s
contents.
(iii)~Make sure you aren’t using a compiler option which optimises for
a processor you don’t have...!
If none of these apply, this probably isn’t the cause.

(c)~The program tried to allocate a resource or create an object, and was
unsuccessful, but didn’t check for this possibility and so proceeded
to attempt access to the nonexistent object; or it attempted to access
an object which had ceased to exist. Then it read a pointer supposedly
contained in the object, which happened to be odd (because it wasn’t
really a pointer) and used it... PROGRAMMERS: Double-check your
resource (de-)allocation, window opening/closing etc. If resources can
be freed at various points in a program, it is often necessary to zero
the resource pointer immediately afterwards. Then future checks will
correctly identify the resource as unallocated. Unfortunately, these
bugs can sometimes be very subtle, but then you probably realised that
already...

2. Instruction errors - 8000 0004, 8000 000A, 8000 000B

These errors are all caused by the CPU reading in an instruction which it
does not understand - which generally means that it isn’t really supposed
to be an instruction at all. The separate error codes for $A and $F exist
because opcodes of the form $Axxx and $Fxxx were unused in the 68000 and
are intended to be gradually used up in later processors. The exception
handlers for these instructions can attempt to implement new instructions
in software instead of just crashing. There are four likely possible
causes:

(a)~The program is intended for use on a better CPU than that which you
have. For example, the 68020 processor has many extra instructions
which won’t be recognised by a 68000, so a program intended for 68020s
will crash with this error (if it doesn’t check and politely fail).
PROGRAMMERS: Make sure you aren’t using a compiler option which
optimises for a processor you don’t have, or an assembler instruction
which isn’t supported by your processor.

(b)~The program has used a pointer to data as a code address. PROGRAMMERS:
Try checking any hook, interrupt or patch addresses you are passing to
functions or storing in structures.

(c)~A system patch, interrupt or hook has been installed, and the memory
containing the code which handles this has been freed and re-used.
PROGRAMMERS: Take a good look at your cleanup/exit code, and make sure
any references to your code which are held by other programs have been
removed before your program terminates (unless you have made special
provisions).

(d)~The program is attempting to use more stack space than is available -

in 6 / 8

and so is over-running into code space. If it is not your program,
check the documentation for any information on stack requirements. To
change the stack space allocated for it, you must use either the
Workbench ’Information’ function or the CLI ’Stack’ command (depending
on which the program is started from) - see your Commodore manual for
usage information. PROGRAMMERS: Check how much data you are putting on
the stack. In C programs, all variables declared within a function
which aren’t of storage type ’static’ or ’register’ will be stored on
the stack, so perhaps you should consider using dynamic memory
allocation for some of this data, or enabling your compiler’s dynamic
stack allocation (it does have it, doesn’t it? :-). Also, recursive
function calling and some system calls can be real stack-killers.

3. Memory errors - 0100 0009, 0100 000C, 8100 0005, 8100 0009

The first and fourth of these codes give the message ’memory already free
at FreeMem’. What this actually means is that the program tried to free
memory (having finished using some memory space) which was already marked
as free. So the program quite possibly had been using this memory to store
its data during the time in which it had been marked as free and hence
liable to be re-used by other programs! There are two likely possible
causes of this:

(a)~The memory was freed once, and the pointer which the program used to
access this memory was left as it was. Then the program did a little
tidying up, and decided to free the memory which it no longer needed.
But... the memory was already free! PROGRAMMERS: Track your memory
(de-)allocation carefully. If your memory allocations are very
complex, you should try clearing all memory pointers after the memory
is freed, just as you should with pointers to any other resource or
dynamic object.

(b)~The program tried to free memory using a pointer which was either not
really a pointer or else was a pointer to data which were part of a
larger block of memory (e.g. the program tried to free part of
itself). PROGRAMMERS: PLEASE recheck those flamin’ pointers AGAIN!

The other two codes occur if the system’s list of free memory is somehow
corrupt. The first is the real serious one, and it seems to be the only
error guaranteed to crash the system every #%&$ing time. There are three
likely possible causes:

(c)~An attempt was made to free memory which was already free - see (a)
and (b).

(d)~A program has gone out of control and written junk all over memory,
including the free memory list. This could result from attempting to use a
larger block of memory than it has allocated for itself, or else it is
using as a pointer something which isn’t a pointer (does this sound
familiar?). PROGRAMMERS: You should be ashamed of yourself! Seriously
though, this can occur if you over-run the stack - see 2(d).

(e)~A program has attempted to free part of a memory block, rather than
freeing the whole lot at once. PROGRAMMERS: Note that although the system
usually won’t complain if you try this, apparently in some cases it will
crash.

in 7 / 8

(f)~A program has continued to use memory that it has freed. PROGRAMMERS:
Don’t free memory while you still have pointers to it!

The second code (0100 000C) seems to be a less serious case of the first
error. I don’t know why this error usually appears as a Recoverable Alert.
I have on one occasion when this alert popped up found I had 200MB of free
Chip RAM - hmm... Maybe this error results from wierd bugs in the system
memory routines... but I doubt it. In fact, I have no idea why some
corruption causes this whereas other corruption brings down the system
with error 8100 0005. Sorry.

4. Division by zero - 8000 0005

Strangely enough, it is impossible to calculate the result of division by
zero, since it is undefined... PROGRAMMERS: You should add code to your
own program to deal with this ever-present problem.

5. Unexpected packet - 8700 0004

This usually means that the program is intended to be used from the CLI
only, and has been started from the Workbench. There is a simple
work-around, which is to use Workbench’s ’Information’ function on the
program’s icon, and add the tooltype ’CLI’ to it. Then, whenever you open
the icon, you will get a command-line requester (just as if you were
starting a tool icon revealed by Show>All Icons). PROGRAMMERS: Use
different startup code or compiler options - refer to your documentation
for specifics.

1.8 Acknowledgements

Thanks to all those people out there who wrote Guru guides!

Thanks not a lot to those lamers whose fault it is I see alerts so flamin’
often! (I’m excluding myself because the programs of mine which crash are
generally pre-release versions.)

Thanks to ESCOM and Amiga Technologies for bringing the Amiga back to the
street!

Thanks to Carl Sassenrath for creating Exec and the Guru in the first
place.

Thanks not a lot to Commodore for removing the Guru in 1990!

1.9 How and Why to Contact Me

Please write to me if you have any comments, suggestions, bug reports or
programming hints to make.

Snail mail:
Ben Hutchings
43 Harrison Close

in 8 / 8

Reigate
Surrey RH2 7HS
ENGLAND

E-mail (Internet): benjamin.hutchings@worc.ox.ac.uk

For up-to-date information on AlertPatch and other software by me see my
web page: http://sable.ox.ac.uk/~worc0223/freeware/

	in
	Contents
	Legal Information
	Introduction
	Installation
	How to use AlertPatch
	The History of AlertPatch
	Explanation of Some Common Alerts
	Acknowledgements
	How and Why to Contact Me

